Главная / Медицина и здоровье / Механические силы помогают эмбриону развиваться

Механические силы помогают эмбриону развиваться

Эмбрион актинии Nematostella vectensis, сформировавший многослойную стенку.

Чувствуя давление от соседей, эмбриональные клетки включают гены, помогающие сформироваться нормальному зародышу.

Долгое время считалось, что эмбриональное развитие зависит только от химических сигналов, которые клетки посылают друг другу: в них то включаются, то выключаются те или иные гены, из клеток выходят разные регуляторные белки, которые действуют на соседей, и такие сигналы зависят только от концентрации регуляторных белков, скорости их синтеза и утилизации и т. д.

Но ведь клетки в эмбрионе сидят довольно тесно друг к другу и должны чувствовать физический контакт. Очевидно, из давления друг на друга они могли бы сделать какие-то выводы о том, как им дальше развиваться.

Действительно, есть такой феномен под названием механотрансдукция, когда механическое напряжение преобразуется в молекулярный сигнал, и сейчас уже известно, что механотрансдукция играет большую роль в общении эмбриональных клеток друг с другом.

Однако большинство таких исследований выполняется на клеточных культурах. Екатерина Пухлякова и ее коллеги из Венского университета продемонстрировали, что механические силы работают не только на культуре клеток, но и в полноценном эмбрионе.

Они экспериментировали с зародышем актинии – как и у подавляющего большинства многоклеточных животных, зародыш актинии на самых ранних стадиях развития представляет собой полый шарик – бластулу, в котором затем появляется впячивание, и стенки шарика становятся двуслойными (как у кишечнополостных, к которым относятся и актинии) или трехслойными (как у большинства других животных); шарик со слоистыми стенками называется гаструла.

При формировании гаструлы большую роль играет ген brachyury – он кодирует белок, который во многом определяет формирование центральной оси тела и вообще устройство зародыша.

При этом сам brachyury зависит от работы других белков, например, от сократительного белка миозина. Он работает вместе с белками цитоскелета и помогает клеткам менять форму, двигаться, перемещать внутри себя молекулярные грузы и пр. Когда миозин отключали, переставал работать и brachyury, и зародыш получался с дефектами.

Однако, как пишут исследователи в PNAS, если на эмбрион давили – давили в прямом смысле – то ген brachyury включался и начинал работать. Здесь большую роль играл белок бета-катенин, который, в свою очередь, может связываться одновременно с цитоскелетом и с белками, отвечающими за межклеточный контакт.

Актиния Nematostella vectensis.

У бета-катенина много функций, он участвует в некоторых важных сигнальных путях, но в данном случае он, очевидно, как раз помогает превратить внешнее механическое напряжение в сигнал, активирующий зародышевый ген. Возможно, что такой механизм работает и в обычных условиях, когда не нужно спасать зародыш от каких-то мутаций (напомним, что в эксперименте у эмбрионов не работал миозин).

Механотрансдукцию с участием бета-катенина наблюдали и у других животных, включая дрозофил и рыб. Но актинии сильно древнее и тех, и других, так что можно с определенной уверенностью говорить, что механический способ регуляции генетической активности появился еще до того, как разошлись эволюционные пути актиний, позвоночных и насекомых – то есть не позже 600 млн лет назад.

Напоследок стоит сказать, что эмбриональные клетки – не единственные, чья судьба зависит от механических сил. Год назад мы писали о том, как обычные клетки эпителия реагируют друг на друга: если их мало, они делятся, если же вокруг все перенаселено, они гибнут, и ключевым сигналом тут опять же служит механическое напряжение, правда, чувствует его другой белок под названием Piezo1.

 

Источник

Загрузка...
   
        Загрузка...    
   

Посмотрите так же

Чем опасно высокое давление и как его понизить?

Чем опасно высокое давление и как его понизить? Наверное, каждый человек слышал от кого-то из …

Для любых предложений по сайту: [email protected]