Главная / Космос / Как теория Эйнштейна предсказала черные дыры и кротовые норы

Как теория Эйнштейна предсказала черные дыры и кротовые норы

Альберт Эйнштейн Фото: Diomedia

В ноябре 1915 года Альберт Эйнштейн направил на публикацию работу с основными уравнениями общей теории относительности (ОТО). Позднее стало понятно, что новая теория гравитации, которой в 2015 году исполняется сто лет, предсказывает существование черных дыр и пространственно-временных тоннелей. О них и расскажет «Лента.ру».

Что такое ОТО

В основе ОТО лежат принципы эквивалентности и общей ковариантности. Первое (слабый принцип) означает пропорциональность инертной (связанной с движением) и гравитационной (связанной с тяготением) масс и позволяет (сильный принцип) в ограниченной области пространства не различать гравитационное поле и движение с ускорением. Классический пример — лифт. При его равноускоренном движении вверх относительно Земли находящийся в нем наблюдатель не в состоянии определить, находится он в более сильном гравитационном поле или перемещается в рукотворном объекте.

Второй принцип (общей ковариантности) предполагает сохранение уравнениями ОТО своего вида при преобразованиях специальной теории относительности, созданной Эйнштейном и другими физиками к 1905 году. Идеи эквивалентности и ковариантности привели к необходимости рассмотрения единого пространства-времени, которое искривляется в присутствии массивных объектов. Это отличает ОТО от классической теории тяготения Ньютона, где пространство всегда плоское.

ОТО в четырехмерии включает в себя шесть независимых дифференциальных уравнений в частных производных. Для их решения (нахождения явного вида метрического тензора, описывающего кривизну пространства-времени) необходимо задание граничных и координатных условий, а также тензора энергии-импульса. Последний описывает распределение материи в пространстве и, как правило, связан с используемым в теории уравнением состояния. Кроме того, уравнения ОТО допускают введение в них космологической постоянной (лямбда-члена), с которой часто связывают темную энергию и, вероятно, отвечающее ей скалярное поле.

Черные дыры

В 1916 году немецкий математический физик Карл Шварцшильд нашел первое решение уравнений ОТО. Оно описывает гравитационное поле, созданное центрально-симметричным распределением масс с нулевым электрическим зарядом. Это решение содержало так называемый гравитационный радиус тела, определяющий размеры объекта со сферически-симметричным распределением материи, который не способны покинуть фотоны (движущиеся со скоростью света кванты электромагнитного поля).

Определенная таким образом шварцшильдова сфера тождественна понятию горизонта событий, а массивный ограниченный ею объект — черной дыре. Восприятие приближения к нему тела в рамках ОТО различается в зависимости от позиции наблюдателя. Для связанного с телом наблюдателя достижение шварцшильдовой сферы произойдет за конечное собственное время. Для внешнего наблюдателя приближение тела к горизонту событий займет бесконечное время и будет выглядеть как его неограниченное падение на шварцшильдову сферу.

Как массивные объекты превращаются в черные дыры? Консервативный и наиболее признанный в настоящее время ответ на этот вопрос дали в 1939 году физики-теоретики Роберт Оппенгеймер (в 1943 году он стал научным руководителем Манхэттенского проекта, в рамках которого в США была создана первая в мире атомная бомба) и его аспирант Хартланд Снайдер.

В 1930-х годах астрономы заинтересовались вопросом о будущем звезды, если в ее недрах закончилось ядерное топливо. Для небольших звезд, подобных Солнцу, эволюция приведет к превращению в белых карликов, у которых сила гравитационного сжатия уравновешивается электромагнитным отталкиванием электронно-ядерной плазмы. У более тяжелых звезд гравитация оказывается сильнее электромагнетизма, и возникают нейтронные звезды. Сердцевина у таких объектов — из нейтронной жидкости, а ее покрывает тонкий плазменный слой электронов и тяжелых ядер.

Предельное значение массы белого карлика, не дающее ему превратиться в нейтронную звезду, в 1932 году впервые оценил индийский астрофизик Субраманьян Чандрасекар. Этот параметр вычисляется из условия равновесия вырожденного электронного газа и сил гравитации. Современное значение предела Чандрасекара оценивается в 1,4 солнечной массы.

Верхнее ограничение на массу нейтронной звезды, при которой она не превращается в черную дыру, получило название предела Оппенгеймера-Волкова. Определяется из условия равновесия давления вырожденного нейтронного газа и сил гравитации. В 1939 году получили значение в 0,7 солнечной массы, современные оценки варьируются от 1,5 до 3,0.

Кротовая нора

Физически червоточина (кротовая нора) представляет собой тоннель, связывающий две удаленные области пространства-времени. Эти области могут находиться в одной и той же вселенной или связывать разные точки разных вселенных (в рамках концепции мультивселенной). В зависимости от возможности вернуться сквозь нору обратно их подразделяют на проходимые и непроходимые. Непроходимые дыры быстро закрываются и не позволяют потенциальному путешественнику проделать обратный путь.

С математической точки зрения червоточина — это гипотетический объект, получаемый как особое несингулярное (конечное и имеющее физический смысл) решение уравнений ОТО. Обычно червоточины изображают в виде согнутой двумерной поверхности. Попасть с одной ее стороны на другую можно как обычным способом, так и по соединяющему их тоннелю. В наглядном случае двумерного пространства видно, что это позволяет существенно сократить расстояние.

В двумерии горловины червоточины — отверстия, с которых начинается и заканчивается тоннель — имеют форму окружности. В трехмерии горловина кротовой норы похожа на сферу. Образуются такие объекты из двух сингулярностей в разных областях пространства-времени, которые в гиперпространстве (пространстве большей размерности) стягиваются друг к другу с образованием норы. Поскольку нора — это пространственно-временной тоннель, путешествовать по нему можно не только в пространстве, но и во времени.

Впервые решения уравнений ОТО типа кротовой норы привел в 1916 году Людвиг Фламм. Его работа, описывавшая кротовую нору со сферической горловиной без гравитирующей материи, не привлекла внимания ученых. В 1935 году Эйнштейн и американо-израильский физик-теоретик Натан Розен, не знакомые с работой Фламма, нашли аналогичное решение уравнений ОТО. Ими двигало в этой работе желание объединить гравитацию с электромагнетизмом и избавиться от сингулярностей решения Шварцшильда.

В 1962 году американские физики Джон Уилер и Роберт Фуллер показали, что червоточина Фламма и мост Эйнштейна-Розена быстро схлопываются и потому являются непроходимыми. Первое решение уравнений ОТО с проходимой кротовой норой предложил в 1986 году американский физик Кип Торн. Его червоточина заполнена материей с отрицательной средней плотностью массы, препятствующей закрытию тоннеля. Элементарные частицы с такими свойствами науке пока неизвестны. Вероятно, они могут входить в состав темной материи.

Гравитация сегодня

Решение Шварцшильда — самое простое для черных дыр. Сейчас уже описаны вращающиеся и заряженные черные дыры. Последовательная математическая теория черных дыр и связанных с ними сингулярностей развита в работах британского математика и физика Роджера Пенроуза. Еще в 1965 году в журнале Physical Review Letters он опубликовал статью под названием «Гравитационный коллапс и пространственно-временные сингулярности».

В ней описывается образование так называемой ловушечной поверхности, приводящей к эволюции звезды в черную дыру и возникновению сингулярности — особенности пространства-времени, где уравнения ОТО дают некорректные с физической точки зрения решения. Выводы Пенроуза считаются первым крупным математически строгим результатом ОТО.

Вскоре после этого ученый вместе с британцем Стивеном Хокингом показал, что в далеком прошлом Вселенная находилась в состоянии с бесконечной плотностью массы. Сингулярности, возникающие в ОТО и описанные в работах Пенроуза и Хокинга, не поддаются объяснению в современной физике. В частности, это приводит к невозможности описания природы до Большого взрыва без привлечения дополнительных гипотез и теорий, например, квантовой механики и теории струн. Развитие теории кротовых нор в настоящее время также невозможно без квантовой механики.

Источник

Загрузка...
   
        Загрузка...    
   

Посмотрите так же

Магия цвета: как цвета влияют на нашу жизнь

Магия цвета: как цвета влияют на нашу жизнь Наша жизнь стала настолько переполнена информацией, что …

Для любых предложений по сайту: [email protected]