Главная / Медицина и здоровье / «Человеческая электростанция»: как работают молекулярные станки в клетках

«Человеческая электростанция»: как работают молекулярные станки в клетках

Каждая наша клетка представляет собой цех, наполненный станками. Станки вмонтированы в мембраны митохондрий — микроскопических энергетических центров. Они служат для производства АТФ (аденозинтрифосфат) — это «человеческий бензин», на котором работает весь наш организм. Сотни триллионов митохондрий ежесекундно «гудят» от «рева» проворачивающихся робототехнических устройств на протонной тяге. В маленькую дырочку попадает фосфат, который проваливается в контейнер, за счет электрического тока протонов приобретает там новые химические свойства, а потом вываливается в шланг, по которому поступает внутрь митохондрии для присоединения к другим фосфатам для образования молекулы АТФ.

Аденозинтрифосфат

Неужели эта промышленная картина может быть частью нашего организма? И откуда в наших клетках эти «станки»? И как там оказываются протоны? И неужели устройства, напоминающие круговые двери в супермаркетах, могут в количестве миллионов штук «населять» нас изнутри?

Все эти вопросы, а также ответы на них родились у микробиологов и биофизиков, которые хотели понять, как разнообразная еда, поглощаемая человеком, превращается в вещество, снабжающее энергией каждую нашу мышцу. Оказывается, цикл превращений так сложен, что изложение его в подробностях может составить текст солидной книги. Но вкратце это можно представить так: после того как пища пережевана и проглочена, она попадает в желудок, где подвергается различным видоизменениям, позволяющим дальнейшее всасывание. Процесс пищеварения продолжается в тонком кишечнике под воздействием различных пищевых ферментов. Там происходит превращение углеводов в глюкозу, расщепление липидов и белков.

Потом глюкоза попадает в клетку. Там она распадается пополам на две составляющие — и в таком виде (это называется пируват) попадает в митохондрию.

Схема строения митохондрии

Митохондрии — это обязательная часть клеток большинства живых организмов — животных, растений, грибов. По одной из версий, митохондрии когда-то были самостоятельными организмами и жили отдельно от нас, поэтому до сих пор сохранили свой геном (митохондриальный). То есть в каждой клеточке любого человека сидит существо со своим геномом! Но в какой-то момент, еще в древности, они слились с нашими клетками, обеспечивая им переработку пищи в энергию. Это плодотворное сотрудничество, выгодное обоим организмам, называется симбиозом и продолжается до сих пор.

Итак, попадая в митохондрию, пируваты — части глюкозы (в цикле Кребса) последовательно окисляются.

Цикл трикарбоновых кислот

Неподалеку в митохондрии плавает никотинамидадениндинуклеотид (NAD), у которого энергия окисления при переходе на эту молекулу вызывает отщепление протона.

Вот! Наконец-то в сложной схеме превращений возник тот самый протон, который необходим для синтеза молекулы АТФ. На нашей главной иллюстрации эти протоны носятся в быстром темпе над мембраной митохондрии, прежде чем попасть в «станок». На самом деле, до последнего времени не было понятно, как именно они туда попадают. Ведь эти протоны могут уплывать куда им вздумается! Однако почему-то они держатся около мембраны, «кучкуясь» прямо у входа в круговые ворота «станка». Российские ученые НИТУ «МИСиС» в кооперации с австрийскими коллегами из Института биофизики Университета имени Иоганна Кеплера (Линц), проведя филигранные эксперименты, теперь знают, почему же так получается.

Сотрудник кафедры теоретической физики и квантовых технологий НИТУ «МИСиС» Сергей Акимов

Поясняет сотрудник кафедры теоретической физики и квантовых технологий НИТУ «МИСиС» Сергей Акимов: «Протоны, двигаясь внутри митохондрии, пребывают в воде. Известно, что молекула воды (H2O) состоит из двух атомов водорода (H1) и одного атома кислорода (O16). Помимо химической связи внутри одной молекулы воды, эти атомы могут образовывать слабые связи с соседними молекулами воды, называемые водородными связями. Вблизи поверхности мембраны эти связи в молекуле воды образуются особым образом, поскольку с одной стороны находится вода, с другой — «стенка». Водородные связи вблизи мембраны другие, у них другое число, другая структура. Именно их протон и использует в качестве «рельсов» для продвижения вперед вдоль мембраны. Наше исследование показало, что ему «нравится» эта структура, он не уплывает вглубь митохондрии, а аномально быстро носится вдоль мембраны».

Так происходит «захват» протонов для образования самой главной энергетической молекулы нашего тела — АТФ. Они используются для любого нашего движения, поддержания температуры тела и так далее. АТФ представляет собой универсальный «аккумулятор», поставляющий энергию для большинства реакций, происходящих в клетке. Таким образом обеспечивается синтез белков, углеводов, жиров, движение жгутиков и ресничек, транспорт веществ, избавление клетки от отходов. При расщеплении АТФ — разрядке «аккумулятора» — выделяется нужная нам энергия.

Схема переноса протонов через мембрану митохондрии и синтеза АТФ. Окисление органических соединений в матриксе митохондрии сопровождается последовательным переходом электронов (красная стрелка) по белковым комплексам дыхательной цепи митохондрии (светло-зеленые белки). Энергия, выделяющаяся при этих переходах электронов, расходуется на перенос протонов (тонкие голубые стрелки) через мембрану с помощью вспомогательной молекулы НАД (никотинамидадениндинуклеотид). В конечном итоге электроны попадают на кислород, к нему присоединяются протоны, и в матриксе митохондрии образуется вода. Протоны, накопившиеся на наружной стороне мембраны, могут вернуться обратно в матрикс митохондрии только через специальные ворота — АТФ-синтазу. При протекании протонов в активном центре АТФ-синтазы к аденозин-ди-фосфату, предшественнику молекулы АТФ, присоединяется фосфат, и получается аденозин-три-фосфат, то есть АТФ.

Полученные результаты фундаментального исследования приближают ученых к пониманию глобальных механизмов генерации энергии в клетках, а также открывают перспективы перед фармакологией. Результаты работы могут быть использованы для разработки препаратов, нейтрализующих действие разобщительных ядов, а также для профилактики заболеваний, связанных с гиперфункцией щитовидной железы. При этих патологиях в митохондриях накапливаются так называемые вещества-разобщители — слабые жирорастворимые кислоты, которые эффективно связывают протоны, что приводит к общему снижению синтеза АТФ. Новые знания, полученные российскими учеными, позволяют понимать, что нужно сделать для того, чтобы восстановить энергию человека на уровне каждой клетки.

Источник

Загрузка...
   
        Загрузка...    
   

Посмотрите так же

Чем опасно высокое давление и как его понизить?

Чем опасно высокое давление и как его понизить? Наверное, каждый человек слышал от кого-то из …

Для любых предложений по сайту: [email protected]